3.9.3 \(\int \frac {x^2 (a+b x)^2}{(c x^2)^{5/2}} \, dx\)

Optimal. Leaf size=58 \[ -\frac {a^2}{2 c^2 x \sqrt {c x^2}}-\frac {2 a b}{c^2 \sqrt {c x^2}}+\frac {b^2 x \log (x)}{c^2 \sqrt {c x^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {15, 43} \begin {gather*} -\frac {a^2}{2 c^2 x \sqrt {c x^2}}-\frac {2 a b}{c^2 \sqrt {c x^2}}+\frac {b^2 x \log (x)}{c^2 \sqrt {c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*x)^2)/(c*x^2)^(5/2),x]

[Out]

(-2*a*b)/(c^2*Sqrt[c*x^2]) - a^2/(2*c^2*x*Sqrt[c*x^2]) + (b^2*x*Log[x])/(c^2*Sqrt[c*x^2])

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int \frac {x^2 (a+b x)^2}{\left (c x^2\right )^{5/2}} \, dx &=\frac {x \int \frac {(a+b x)^2}{x^3} \, dx}{c^2 \sqrt {c x^2}}\\ &=\frac {x \int \left (\frac {a^2}{x^3}+\frac {2 a b}{x^2}+\frac {b^2}{x}\right ) \, dx}{c^2 \sqrt {c x^2}}\\ &=-\frac {2 a b}{c^2 \sqrt {c x^2}}-\frac {a^2}{2 c^2 x \sqrt {c x^2}}+\frac {b^2 x \log (x)}{c^2 \sqrt {c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 36, normalized size = 0.62 \begin {gather*} \frac {x^3 \left (2 b^2 x^2 \log (x)-a (a+4 b x)\right )}{2 \left (c x^2\right )^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*x)^2)/(c*x^2)^(5/2),x]

[Out]

(x^3*(-(a*(a + 4*b*x)) + 2*b^2*x^2*Log[x]))/(2*(c*x^2)^(5/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.04, size = 40, normalized size = 0.69 \begin {gather*} \frac {\frac {1}{2} \left (-a^2 x^3-4 a b x^4\right )+b^2 x^5 \log (x)}{\left (c x^2\right )^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x^2*(a + b*x)^2)/(c*x^2)^(5/2),x]

[Out]

((-(a^2*x^3) - 4*a*b*x^4)/2 + b^2*x^5*Log[x])/(c*x^2)^(5/2)

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 36, normalized size = 0.62 \begin {gather*} \frac {{\left (2 \, b^{2} x^{2} \log \relax (x) - 4 \, a b x - a^{2}\right )} \sqrt {c x^{2}}}{2 \, c^{3} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x+a)^2/(c*x^2)^(5/2),x, algorithm="fricas")

[Out]

1/2*(2*b^2*x^2*log(x) - 4*a*b*x - a^2)*sqrt(c*x^2)/(c^3*x^3)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x+a)^2/(c*x^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [A]  time = 0.01, size = 34, normalized size = 0.59 \begin {gather*} \frac {\left (2 b^{2} x^{2} \ln \relax (x )-4 a b x -a^{2}\right ) x^{3}}{2 \left (c \,x^{2}\right )^{\frac {5}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(b*x+a)^2/(c*x^2)^(5/2),x)

[Out]

1/2*x^3*(2*b^2*x^2*ln(x)-4*a*b*x-a^2)/(c*x^2)^(5/2)

________________________________________________________________________________________

maxima [A]  time = 1.40, size = 38, normalized size = 0.66 \begin {gather*} -\frac {2 \, a b x^{2}}{\left (c x^{2}\right )^{\frac {3}{2}} c} + \frac {b^{2} \log \relax (x)}{c^{\frac {5}{2}}} - \frac {a^{2}}{2 \, c^{\frac {5}{2}} x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x+a)^2/(c*x^2)^(5/2),x, algorithm="maxima")

[Out]

-2*a*b*x^2/((c*x^2)^(3/2)*c) + b^2*log(x)/c^(5/2) - 1/2*a^2/(c^(5/2)*x^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {x^2\,{\left (a+b\,x\right )}^2}{{\left (c\,x^2\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + b*x)^2)/(c*x^2)^(5/2),x)

[Out]

int((x^2*(a + b*x)^2)/(c*x^2)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} \left (a + b x\right )^{2}}{\left (c x^{2}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(b*x+a)**2/(c*x**2)**(5/2),x)

[Out]

Integral(x**2*(a + b*x)**2/(c*x**2)**(5/2), x)

________________________________________________________________________________________